Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5639, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454044

RESUMO

The involvement of Ca2+ ions in angiosperms sexual processes is well established, while in gymnosperms, such knowledge remains limited and is still a topic of discussion. In this study, we focused on Larix decidua, using Alizarin-red S staining and the pyroantimonate method to examine the tissue and subcellular distribution of free and loosely bound Ca2+ ions at different stages of the male gametophyte's development and its interaction with the ovule. Our findings show that in larch, both the germination of pollen grains and the growth of pollen tubes occur in an environment rich in Ca2+. These ions play a crucial role in the adhesion of the pollen grain to the stigmatic tip and its subsequent movement to the micropylar canal. There is a significant presence of free and loosely bound Ca2+ ions in both the fluid of the micropylar canal and the extracellular matrix of the nucellus. As the pollen tube extends through the nucellus, we observed a notable accumulation of Ca2+ ions just above the entry to the mature archegonium, a region likely crucial for the male gametophyte's directional growth. Meanwhile, the localized presence of free and loosely bound Ca2+ ions within the egg cell cytoplasm may inhibit the pollen tubes growth and rupture, playing an important role in fertilization.


Assuntos
Larix , Polinização , Tubo Polínico , Pólen/metabolismo , Íons/metabolismo , Germinação
2.
Front Plant Sci ; 13: 958004, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061768

RESUMO

Maize (Zea mays L.) is an economically important source of food and feed. This species is highly sensitive to drought, which is the most limiting factor for the biomass yield of a crop. Thus, maize cultivation methods should be improved, especially by environment-friendly agricultural practices, such as microorganisms. Here, we provide evidence that Glomus sp. and Bacillus sp. modulate maize response to drought. Inoculation of maize seeds by these microorganisms restored the proper photosynthetic activity of the plant under drought and stabilized the osmoprotectant content of the leaf. The beneficial effect of Glomus sp. and Bacillus sp. was also related to the stabilization of cell redox status reflected by hydrogen peroxide content, antioxidant enzymes, and malondialdehyde level in leaves. As we revealed by several methods, shaping maize response to drought is mediated by both microorganism-mediated modifications of cell wall composition and structure of leaves, such as downregulating pectin, affecting their methylation degree, and increasing hemicellulose content. Overall, we provide new information about the mechanisms by which Glomus sp. and Bacillus sp. induce drought tolerance in maize, which is a promising approach for mitigating abiotic stresses.

3.
Materials (Basel) ; 14(9)2021 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-34065161

RESUMO

Carbon-based quantum dots are widely suggested as fluorescent carriers of drugs, genes or other bioactive molecules. In this work, we thoroughly examine the easy-to-obtain, biocompatible, nitrogen-containing carbonaceous quantum dots (N-CQDs) with stable fluorescent properties that are resistant to wide-range pH changes. Moreover, we explain the mechanism of fluorescence quenching at extreme pH conditions. Our in vitro results indicate that N-CQDs penetrate the cell membrane; however, fluorescence intensity measured inside the cells was lower than expected from carbonaceous dots extracellular concentration decrease. We studied the mechanism of quenching and identified reduced form of ß-nicotinamide adenine dinucleotide (NADH) as one of the intracellular quenchers. We proved it experimentally that the elucidated redox process triggers the efficient reduction of amide functionalities to non-fluorescent amines on carbonaceous dots surface. We determined the 5 nm-wide reactive redox zone around the N-CQD surface. The better understanding of fluorescence quenching will help to accurately quantify and dose the internalized carbonaceous quantum dots for biomedical applications.

4.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919026

RESUMO

The role of ArabinoGalactan Proteins (AGPs) in the sexual reproduction of gymnosperms is not as well documented as that of angiosperms. In earlier studies, we demonstrated that AGPs play important roles during ovule differentiation in Larix decidua Mill. The presented results encouraged us to carry out further studies focused on the functions of these unique glycoproteins during pollen/pollen tube and ovule interactions in Larix. We identified and analyzed the localization of AGPs epitopes by JIM4, JIM8, JIM13 and LM2 antibodies (Abs) in male gametophytes and ovule tissue during pollination, the progamic phase, and after fertilization and in vitro growing pollen tubes. Our results indicated that (1) AGPs recognized by JIM4 Abs play an essential role in the interaction of male gametophytes and ovules because their appearance in ovule cells is induced by physical contact between reproductive partners; (2) after pollination, AGPs are secreted from the pollen cytoplasm into the pollen wall and contact the extracellular matrix of stigmatic tip cells followed by micropylar canal cells; (3) AGPs synthesized in nucellus cells before pollen grain germination are secreted during pollen tube growth into the extracellular matrix, where they can directly interact with male gametophytes; (4) in vitro cultured pollen tube AGPs labeled with LM2 Abs participate in the germination of pollen grain, while AGPs recognized by JIM8 Abs are essential for pollen tube tip growth.


Assuntos
Células Germinativas Vegetais/metabolismo , Larix/crescimento & desenvolvimento , Larix/metabolismo , Mucoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Germinação , Tubo Polínico/crescimento & desenvolvimento , Polinização , Análise Espacial
5.
J Plant Physiol ; 229: 170-174, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30114566

RESUMO

The abscission of plant organs is a phytohormone-controlled process. Our study provides new insight into the involvement of gibberellic acid (GA3) in the functioning of the flower abscission zone (AZ) in yellow lupine (Lupinus luteus L.). Physiological studies demonstrated that GA3 stimulated flower abortion. Additionally, this phytohormone was abundantly presented in the AZ cells of naturally abscised flowers, especially in vascular bundles. Interesting interactions among GA3 and other modulators of flower separation were also investigated. GA3 accumulated after treatment with the ethylene (ET) precursor 1-aminocyclopropane-1-carboxylic acid (ACC). Abscisic acid (ABA) treatment did not cause such an effect. Furthermore, the expression of the newly identified LlGA20ox1 and LlGA2ox1 genes encoding 2-oxoglutarate-dependent dioxygenases fluctuated after ACC or ABA treatment which confirmed the existence of regulatory crosstalk. GA3 appears to cooperate with the ET precursor in the regulation of AZ function in L. luteus flowers; however, the presented mechanism is ABA-independent.


Assuntos
Ácido Abscísico/farmacologia , Flores/metabolismo , Giberelinas/farmacologia , Lupinus/metabolismo , Flores/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lupinus/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Plant Physiol ; 206: 49-58, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27689739

RESUMO

Flower abscission is a highly regulated developmental process activated in response to exogenous (e.g. changing environmental conditions) and endogenous stimuli (e.g. phytohormones). Ethylene (ET) and abscisic acid (ABA) are very effective stimulators of flower abortion in Lupinus luteus, which is a widely cultivated species in Poland, Australia and Mediterranean countries. In this paper, we show that artificial activation of abscission by flower removal caused an accumulation of ABA in the abscission zone (AZ). Moreover, the blocking of that phytohormone's biosynthesis by NDGA (nordihydroguaiaretic acid) decreased the number of abscised flowers. However, the application of NBD - an inhibitor of ET action - reversed the stimulatory effect of ABA on flower abscission, indicating that ABA itself is not sufficient to turn on the organ separation. Our analysis revealed that exogenous ABA significantly accelerated the transcriptional activity of the ET biosynthesis genes ACC synthase (LlACS) and oxidase (LlACO), and moreover, strongly increased the level of 1-aminocyclopropane-1-carboxylic acid (ACC) - ET precursor, which was specifically localized within AZ cells. We cannot exclude the possibility that ABA mediates flower abscission processes by enhancing the ET biosynthesis rate. The findings of our study will contribute to the overall basic knowledge on the phytohormone-regulated generative organs abscission in L. luteus.


Assuntos
Ácido Abscísico/farmacologia , Vias Biossintéticas/efeitos dos fármacos , Etilenos/biossíntese , Flores/fisiologia , Lupinus/fisiologia , Aminoácidos Cíclicos/metabolismo , Vias Biossintéticas/genética , Flores/efeitos dos fármacos , Imunofluorescência , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Lupinus/efeitos dos fármacos , Lupinus/genética , Masoprocol/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcrição Gênica/efeitos dos fármacos
7.
PLoS One ; 10(2): e0117337, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25671569

RESUMO

Manuscript provides insights into the biology of long-lived plants, different from Arabidopsis, tomato or grass species that are widely studied. In the European larch the diplotene stage lasts approximately 5 months and it is possible to divide it into several substages and to observe each of them in details. The diplotene stage is a period of intensive microsporocyte growth associated with the synthesis and accumulation of different RNA and proteins. Larch microsporocytes display changes in chromatin morphology during this stage, alternating between 4 short stages of chromatin condensation (contraction) and 5 longer diffusion (relaxation) stages. The occurrence of a diplotene diffusion stage has been observed in many plant species. Interestingly, they have also been observed during spermiogenesis and oogenesis in animals. The aim of this study was to examine whether chromatin relaxation during the diplotene is accompanied by the synthesis and maturation of mRNA. The results reveal a correlation between the diffusion and chromatin decondensation, transcriptional activity. We also found decreasing amount of poly(A) mRNA synthesis in the consecutive diffusion stages. During the early diffusion stages, mRNA is intensively synthesized. In the nuclei large amounts of RNA polymerase II, and high levels of snRNPs were observed. In the late diffusion stages, the synthesized mRNA is not directly subjected to translation but it is stored in the nucleus, and later transported to the cytoplasm and translated. In the last diffusion stage, the level of poly(A) RNA is low, but that of splicing factors is still high. It appears that the mRNA synthesized in early stages is used during the diplotene stage and is not transmitted to dyad and tetrads. In contrast, splicing factors accumulate and are most likely transmitted to the dyad and tetrads, where they are used after the resumption of intense transcription. Similar meiotic process were observed during oogenesis in animals. This indicates the existence of an evolutionarily conserved mechanism of chromatin-based regulation of gene expression during meiotic prophase I.


Assuntos
Larix/citologia , Larix/genética , Prófase Meiótica I , Transcrição Gênica , Cromatina/genética , Cromatina/metabolismo , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA Nuclear Pequeno/genética
8.
Planta ; 240(1): 195-208, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793355

RESUMO

Studies on angiosperm plants have shown that homogalacturonan present in the extracellular matrix of pistils plays an important role in the interaction with the male gametophyte. However, in gymnosperms, knowledge on the participation of HG in the pollen-ovule interaction is limited, and only a few studies on male gametophytes have been reported. Thus, the aim of this study was to determine the distribution of HG in male gametophytes and ovules during their interaction in Larix decidua Mill. The distribution of HG in pollen grains and unpollinated and pollinated ovules was investigated by immunofluorescence techniques using monoclonal antibodies that recognise high methyl-esterified HG (JIM7), low methyl-esterified HG (JIM5) and calcium cross-linked HG (2F4). All studied categories of HG were detected in the ovule. Highly methyl-esterified HG was present in the cell walls of all cells throughout the interaction; however, the distribution of low methyl-esterified and calcium cross-linked HG changed during the course of interaction. Both of these categories of HG appeared only in the apoplast and the extracellular matrix of the ovule tissues, which interact with the male gametophyte. This finding suggests that in L. decidua, low methyl-esterified and calcium cross-linked HG play an important role in pollen-ovule interaction. The last category of HG is most likely involved in adhesion between the pollen and the ovule and might provide an optimal calcium environment for pollen grain germination and pollen tube growth.


Assuntos
Larix/citologia , Óvulo Vegetal/citologia , Pectinas/metabolismo , Pólen/citologia , Anticorpos Monoclonais , Parede Celular/metabolismo , Epitopos/metabolismo , Esterificação , Matriz Extracelular/metabolismo , Imunofluorescência , Larix/fisiologia , Óvulo Vegetal/fisiologia , Pólen/fisiologia , Tubo Polínico/citologia , Tubo Polínico/fisiologia , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...